

Metabolism Clinical and Experimental

Metabolism Clinical and Experimental 56 (2007) 308-313

www.elsevier.com/locate/metabol

Metformin reduces endothelial cell expression of both the receptor for advanced glycation end products and lectin-like oxidized receptor 1

Nadjat Ouslimani, Meriem Mahrouf, Jacqueline Peynet, Dominique Bonnefont-Rousselot, Claudine Cosson, Alain Legrand, Jean-Louis Beaudeux*

Département de Biochimie, Faculté de Pharmacie, EA 3617 "Biochimie radicalaire et atteintes vasculaires", F75006 Paris, France Received 11 May 2006; accepted 25 October 2006

Abstract

Beyond its antihyperglycemic action, the antidiabetic oral drug metformin possesses antioxidant properties that may contribute to improve the cardiovascular deleterious effects of the diabetic disease. We explored whether metformin could modulate the redox-sensible expression of receptor for advanced glycation end products (RAGE) and lectin-like oxidized receptor 1 (LOX-1), 2 endothelial membrane receptors involved in the arterial endothelial dysfunction observed in diabetes. Bovine aortic endothelial cells, either unstimulated or activated by high levels of glucose (30 mmol/L) or advanced glycation end products, were incubated for 72 hours with metformin at therapeutically relevant concentrations (10^{-5} to 5×10^{-4} mol/L). The expressions of RAGE and LOX-1 were evaluated on cell extracts by Western blot analysis. Metformin was shown to reduce, in dose-dependent manner, such expression of the 2 receptors, both in stimulated (by either glucose or advanced glycation end products) and in unstimulated cells. The effect of metformin was associated with a decrease in intracellular reactive oxygen species as assessed using the 2',7'-dichlorodihydrofluorescein diacetate fluoroprobe. Taken together, our results suggest that the intracellular antioxidant properties of metformin may result in the inhibition of cell expression of both RAGE and LOX-1, possibly through a modulation of redox-sensible nuclear factors such as nuclear factor κB , that were shown to be involved in such receptor cell expression. © 2007 Elsevier Inc. All rights reserved.

1. Introduction

Macroangiopathy is a major complication of diabetes mellitus and represents a leading cause of morbidity and mortality. Chronic perturbation of diabetic vasculature leads to the accelerated progression of atherosclerotic plaques. This process is mediated through vascular cell dysfunction and oxidative stress that are key factors in inflammatory events and results in plaque erosion and rupture [1]. Dysfunction of vascular endothelium plays a key role in this process, through the release of proinflammatory mediators and the expression of cell membrane receptors that participate to maintain the chronic vascular inflammatory state.

The hyperglycemic state of diabetes is responsible for glycation of proteins and formation of advanced glycation end products (AGE) accumulating in the vessel wall by ligands (eg, oxidized low-density lipoprotein for LOX-1), some of them being important proinflammatory stimuli for progression of atherosclerosis [3,4]. Activation of RAGE and LOX-1 receptors by these agents contributes to vascular endothelial dysfunction, by inducing proinflammatory redox-sensible transduction and transcription pathways [5].

Metformin (N,N-dimethylbiguanide) is an antihyperglycemic agent widely used for the management of type 2 diabetes mellitus. Beyond its glucose-lowering effects, metformin exhibits antioxidant properties that contribute to the vasculoprotective effects observed in several epide-

miological studies [6]. Metformin possesses a direct scavenging effect against oxygenated free radicals generated

interaction with their selective receptor RAGE (receptor for advanced glycation end products) [2]. Advanced

glycation end products are also ligands for other cell re-

ceptors, including lectin-like oxidized receptor 1 (LOX-1),

which is implicated in the deleterious activation of several

cell types involved in the atherosclerotic progression. In

return, these 2 receptors have a diverse repertoire of

^{*} Corresponding author. Tel.: +33 1 53 73 96 08; fax: +33 1 53 73 97 08

E-mail address: jean-louis.beaudeux@univ-paris5.fr (J.-L. Beaudeux).

in vitro [7] and decreases intracellular production of reactive oxygen species (ROS) in aortic endothelial cells through the reduction of both NAD(P)H oxidase and/or the mitochondrial respiratory chain pathways [8]. We and others recently showed that such effect was mediated by the modulation of redox-sensible transduction pathways such as the protein kinase C pathway [9,10], possibly through the activation of adenosine monophosphate kinase that reduces diacylglycerol synthesis [11].

We studied here whether metformin was able to modulate RAGE and/or LOX-1 receptor expressions in aortic endothelial cells activated by 2 pathophysiologic stimuli of the diabetic state, AGE and high glucose levels. We showed for the first time that the antidiabetic drug significantly reduced endothelial cell expression of the 2 receptors, and we also studied whether it might be related to the inhibitory effect of metformin on the intracellular ROS production.

2. Materials and methods

2.1. Materials, reagents, and culture media

Cell culture materials, media, and reagents were from Sigma-Aldrich (L'isle d'Abeau-Chesnes, France). 2',7'-Dichlorodihydrofluorescein diacetate (H₂DCF-DA) probe was purchased from Interchim (Montluçon, France). Mouse antihuman LOX-1 receptor antibody was provided by Dr Sawamura (Tokyo, Japan); mouse antihuman RAGE and goat peroxidase-conjugated antimouse immunoglobulin G for Western blot revelation were from Chemicon International (Temecula, CA).

2.2. Cell culture

Bovine aortic endothelial cells (BAECs) were provided by Pr P. Duriez (Institut Pasteur, Lille, France). Cells were cultured in Dulbecco modified Eagle medium supplemented with 10% heat-inactivated fetal calf serum, 100 IU/mL penicillin, and 100 μ g/mL streptomycin at 37°C under a 5% CO₂ humidified atmosphere. Glucose concentration in this medium was 5.5 mmol/L. Cells were used between the sixth and tenth passages. Viability was assessed by the neutral red assay; a cell viability of more than 95% was constantly required for performing experiments.

2.3. Preparation of AGE

A methylglyoxal-modified bovine serum albumin (BSA) stock solution was prepared under sterile conditions by incubating 20 mg/mL of BSA with 750 mmol/L methylglyoxal in phosphate-buffered solution at 37°C for 72 hours. A work solution was extemporaneously prepared by a 1/10 000 dilution; when appropriate, BAECs were incubated with methylglyoxal-BSA (AGE-albumin) by a 10-fold dilution of the work solution. The lack of cell viability alteration by AGE in these experimental conditions was controlled by the neutral red assay.

2.4. Experimental procedure and Western blotting

Confluent cells in 75-cm² dishes were incubated for 72 hours with stimulating agents (final concentrations of either 30 mmol/L glucose or 2 μ g proteins per milliliter of AGE-albumin) with or without metformin at various concentrations (10^{-5} to 5×10^{-4} mol/L), the lowest concentration being at a systemic pharmacologic level. Then cells were harvested by mild trypsination, washed twice in ice-cold PBS (pH 7.5), and lysed by sonication (3×10 seconds at 80 W, Brand Sonicator, Mettler, France); homogenates were centrifuged at 8000g for 5 minutes at 4°C to remove nuclei and unbroken cells. Protein concentration of the supernatant was determined using the Bio-Rad protein assay (Bio-Rad, Marnes la Coquette, France).

Cell homogenates (15 µg total proteins) were analyzed on 10% sodium dodecyl sulfate–polyacrylamide electrophoresis gel then transferred to nitrocellulose membrane (Bio-Rad). Membrane was incubated first with blocking buffer (Tris-HCl 20 mmol/L, NaCl 150 mmol/L, 0.05% Tween 20, nonfat dry milk 5%, pH 7.5) for 1 hour at room temperature and then overnight at 4°C in the presence of primary antibodies (anti-RAGE, 1/1000; anti-LOX-1, 1/2000). After washing, membranes were incubated for 1 hour 30 minutes at room temperature with peroxidase-conjugated antimouse immunoglobulin G (1/5000). Antigen detection was performed with enhanced chemiluminescence detection system (Pierce-Perbio, Brébières, France).

Cells incubated for 72 hours without stimulating agent and metformin served as negative controls. Each experiment was performed at least in triplicate.

2.5. Intracellular ROS detection

The H₂DCF-DA probe was used to detect intracellular production of ROS. H₂DCF-DA freely penetrates into cells, and the acetate moiety is cleaved off by intracellular esterases leaving the nonfluorescent H₂DCF, whose oxidation (mainly by endogenous H₂O₂) results in the formation of the fluorescent compound DCF. The fluorescence measured at 530 nm by microspectrofluorimetry is proportional to the H₂O₂ formed into cells at a basal level and under the action of prooxidant stimulating agents. Basal values of fluorescence in nonstimulated cells were 3521 \pm 135 relative fluorescence units (microplate fluorescence analyzer, Fluostar, BMG Labtech, Champigny sur Marne, France). Detection characteristics (gain, sensitivity) of the microplate fluorescence reader were maintained identical for all experiment measurements. Results were expressed as a percentage of basal fluorescence value of either nonstimulated or stimulated control cells.

3. Results

3.1. Expression of RAGE

Western blot analysis of cell lysates for RAGE expression confirmed that unstimulated BAECs did not constitutively

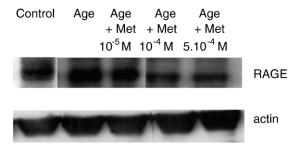


Fig. 1. Receptor for advanced glycation end products Western blots. Effects of metformin (Met) on RAGE expression in AGE-stimulated BAECs. Bovine aortic endothelial cells were incubated for 72 hours with AGE-albumin (final concentration, 20 μ g proteins per milliliter) and with or without metformin (10^{-5} , 10^{-4} , or 5×10^{-4} mol/L). The expression of RAGE was analyzed by Western blot analysis on 10% sodium dodecyl sulfate–polyacrylamide electrophoresis gel.

express RAGE. Incubation of unstimulated BAECs with metformin (10^{-5} to 5×10^{-4} mol/L) for 72 hours did not result in the appearance of RAGE expression in any concentration of the drug. On the contrary, stimulation of cells by AGE-albumin, but not by high levels of glucose, led to a sharp increase of RAGE expression. Finally, the

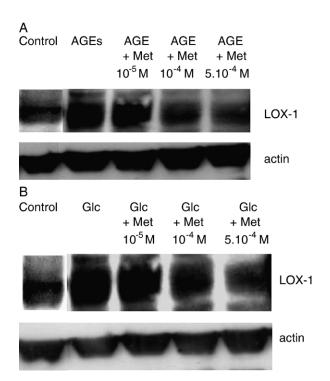


Fig. 2. Lectin-like oxidized receptor 1 Western blots. Effects of metformin (Met) on LOX-1 expression in stimulated BAECs. A, Bovine aortic endothelial cells were incubated for 72 hours with AGE-albumin (final concentration, 20 μg proteins per milliliter) and with or without metformin $(10^{-5}, 10^{-4}, {\rm or}\ 5\times 10^{-4}\ {\rm mol/L})$. Lectin-like oxidized receptor 1 expression was detected by Western blot analysis on 10% sodium dodecyl sulfate–polyacrylamide electrophoresis gel. B, Bovine aortic endothelial cells were incubated for 72 hours with high glucose concentration (30 mmol/L) with or without metformin $(10^{-5},\ 10^{-4},\ {\rm or}\ 5\times 10^{-4}\ {\rm mol/L})$. Lectin-like oxidized receptor 1 expression was detected by Western blot analysis on 10% sodium dodecyl sulfate–polyacrylamide electrophoresis gel.

simultaneous incubation of cells with AGE-albumin and metformin inhibited such increase in the receptor expression in a concentration-dependent manner (Fig. 1).

3.2. LOX-1 expression

Western blot analysis of cell lysates for LOX-1 expression indicated that unstimulated BAECs constitutively express LOX-1 at a low level. Incubation of unstimulated BAECs with metformin for 72 hours did not modify LOX-1 expression in any concentration of the drug (data not shown). Stimulation of cells with AGE-albumin led to a sharp increase of LOX-1 expression. The simultaneous incubation of cells with AGE-albumin and metformin inhibited such increase in the receptor expression in a concentration-dependent manner (Fig. 2A). In the same way, high levels of glucose for 72 hours resulted in a significant enhancement in LOX-1 cell expression that was at least partly inhibited by the simultaneous incubation of metformin (Fig. 2B). As previously observed, the inhibitory effect of metformin on glucose-induced LOX-1 expression appeared to be concentration-dependent.

3.3. Intracellular ROS production

Incubation of unstimulated cells with metformin resulted in a slight decrease in intracellular ROS production, from the lowest concentration tested (-13%, 10^{-5} mol/L). Higher metformin concentrations resulted in statistically significant decrease in ROS production (-39% and -46% for metformin concentrations of 10^{-4} and 5×10^{-4} mol/L, respectively).

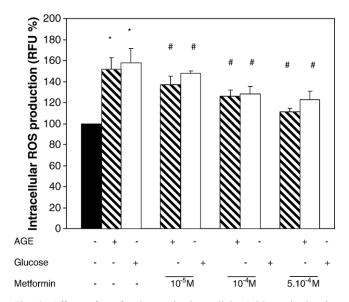


Fig. 3. Effects of metformin on the intracellular ROS production in BAECs. Confluent cells were incubated with metformin $(10^{-5}, 10^{-4}, \text{ or } 5 \times 10^{-4} \text{ mol/L})$ for 72 hours with and without high concentrations of glucose (30 mmol/L) or AGE-albumin (final concentrations, 20 μ g proteins per milliliter). DCF intracellular fluorescence was measured as described in Materials and methods. Results are expressed taking basal fluorescence of unstimulated cells as the 100% reference. *P < .05 vs unstimulated control cells; * $^{\#}P$ < .01 vs the corresponding stimulated cells. RFU = relative fluorescence units.

Experiments of BAEC stimulation with AGE or high glucose levels for 72 hours led to a significant increase in intracellular ROS production, reaching +52% and +58% (P < .05), respectively (Fig. 3). As observed with unstimulated cells, incubation of AGE- or glucose-stimulated cells with metformin resulted in a statistically significant dosedependant inhibition of the ROS production.

4. Discussion

Vascular endothelial dysfunction is a determinant for atherogenesis and plaque progression, particularly in the context of diabetic macroangiopathy. Cell-cell interactions and endothelium activation participate to this process, and are mediated by ligand-receptor interactions. We showed here that pathophysiologic stimuli of the diabetic disease, especially AGE, were able to increase endothelial cell expression of RAGE and LOX-1 receptor, and we demonstrated for the first time that the overexpression of these 2 receptors was reversed by pharmacological concentrations of the antidiabetic drug metformin in our experimental conditions.

The action of AGE and high levels of glucose on endothelial cell have been reported to result in several molecular events such as the generation of ROS (essentially by activation of 2 major sources of ROS, NAD(P)H oxidase and mitochondrial respiratory chain [12-16]), and the activation of p44/p42 mitogen-activated protein kinase pathway [17,18], thus leading to the activation of nuclear factor κ B (NF- κ B) [19,20]. As a consequence, stimulation of endothelial cells by AGE and glucose was shown to enhance the release of endothelial proinflammatory mediators such as monocyte chemoattractant protein 1, vascular cell adhesion molecule 1, and tumor necrosis factor α [21,22].

In addition, AGE was reported to enhance the endothelial cell expression of LOX-1 [23] as well as the expression of its own specific receptor RAGE [24]. Finally, high levels of glucose were shown to enhance LOX-1 [3,25], although Chen et al [26] did not observe such an effect, but were unable to modify endothelial RAGE expression. By return, activation of these 2 receptors results in the intracellular enhancement in ROS formation [27-29], and to the activation of the above-mentioned redox transduction/transcription pathways [25,17], thus contributing to the vicious circle of endothelial dysfunction in the diabetic state.

Our results indicated that a 72-hour incubation of AGE-or glucose-stimulated endothelial cells with metformin resulted in a significant reduction in intracellular ROS production. Such in vitro intracellular antioxidant properties of metformin were already described by our group using shorter incubation times of metformin with endothelial cells. We showed that metformin reduced intracellular ROS production by modulating both NAD(P)H oxidase activity and the mitochondrial respiratory chain [8]. We and others also recently reported that metformin was able to negatively modulate endothelial cell PKC activity, and this effect appeared closely linked to intracellular antioxidant proper-

ties of the drug [9,10]. Finally, the recent study of Isoda et al [30] and Li et al [31] confirmed that metformin, at therapeutically relevant concentrations, was able to inhibit the activation of NF- κ B in vascular cells, although only reported in smooth muscle cells. Actually, antioxidant activity of the antidiabetic drug is now demonstrated by both experimental [32,33] and clinical studies [34], and probably participates to the vasculoprotective effects of metformin observed in epidemiological studies [6]. Because the expressions of RAGE and LOX-1 receptor appeared to be mediated through redox-dependent pathways, the decrease in ROS production induced by metformin certainly contributes to the negative modulation of both RAGE and LOX-1 expressions we originally described in this report. As a unifying model of the relation of the consequences of AGE or glucose cell activation and the modulation of RAGE/LOX-1 receptor by metformin, we can postulate that AGE or high levels of glucose are able to bind to constitutively expressed (although at a low level) endothelial cell LOX-1 receptor, thereby increasing intracellular ROS production (Fig.4). Besides, such increase may be directly induced by glucose through activation of mitochondrial respiratory chain and NAD(P)H oxidase, as we previously observed [8]. The resulting activation of redoxsensible transcription factors such as NF-κB may induce synthesis and release of proinflammatory mediators as well as the overexpression of both LOX-1 and RAGE that in return will be able to increase intracellular redox imbalance, thus amplifying the effects of initial stimulus.

In any way, the effects of metformin on RAGE end LOX-1 expressions may improve several adverse effects of endothelial dysfunction in the diabetic state. Inhibition of NF- κ B lowers proinflammatory response by vascular endothelium [30]. On the other hand, inhibition of LOX-1 cell expression, as induced by different pharmacological agents, results in decreased CD40/CD40L [35] and adhesion molecule [36,37] expressions, as well as decreased apoptosis. Such effects, which can be mediated by the inhibition of redox transcription factors such as NF- κ B, could be

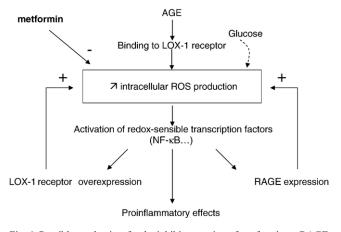


Fig. 4. Possible mechanism for the inhibitory action of metformin on RAGE and LOX-1 expressions.

reproduced by metformin, and therefore could account for the pharmacological vasculoprotective actions of this drug beyond its antihyperglycemic properties. The concentrations used in this work included pharmacological systemic levels (10⁻⁵ mol/L) and higher levels; however, several reports indicated that peripheral blood levels may underestimate tissue levels because tissues and subcellular organites were shown to accumulate metformin [38,39]. Thus, inhibition of RAGE/LOX-1 expressions by metformin we described here could be relevant in the atheromatous lesion environment and could contribute to the beneficial properties of the drug on macrovascular complications of diabetes.

Acknowledgment

We gratefully thank Dr Tatsuya Sawamura for providing anti–LOX-1 antibody.

References

- Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 2006;40:183-92.
- [2] Kalousova M, Zima T, Tesar V, et al. Advanced glycoxidation end products in chronic diseases—clinical chemistry and genetic background. Mutat Res 2005;597:37-46.
- [3] Li L, Sawamura T, Renier G. Glucose enhances endothelial LOX-1 expression: role for LOX-1 in glucose-induced human monocyte adhesion to endothelium. Diabetes 2003;52:1843-50.
- [4] Chen M, Sawamura T. Essential role of cytoplasmic sequences for cellsurface sorting of the lectin-like oxidized LDL receptor–1 (LOX-1). J Mol Cell Cardiol 2005;39:553-61.
- [5] Alves M, Cunha DA, Calegari VC, et al. Nuclear factor–kappaB and advanced glycation end-products expression in lacrimal glands of aging rats. J Endocrinol 2005;187:159-66.
- [6] United Kingdom Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes. Lancet 1998;352:854-65.
- [7] Bonnefont-Rousselot D, Raji B, Walrand S, et al. An intracellular modulation of free radical production could contribute to the beneficial effects of metformin towards oxidative stress. Metabolism 2003;52:586-9.
- [8] Ouslimani N, Peynet J, Bonnefont-Rousselot D, et al. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism 2005;54:829-34.
- [9] Gallo A, Ceolotto G, Pinton P, et al. Metformin prevents glucoseinduced protein kinase C-beta2 activation in human umbilical vein endothelial cells through an antioxidant mechanism. Diabetes 2005; 54:1123-31
- [10] Mahrouf M, Ouslimani N, Couturier M, et al. Metformin reduces angiotensin-mediated-intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein Kinase C. Biochem Pharmacol 2006;72:176-83.
- [11] Zou MH, Kirkpatrick SS, Davis BJ, et al. Activation of the AMPactivated protein kinase by the anti-diabetic drug metformin in vivo: role of mitochondrial reactive nitrogen species. J Biol Chem 2004; 279:43940-51.
- [12] Mukherjee TK, Mukhopadhyay S, Hoidal JR. The role of reactive oxygen species in TNFalpha-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells. Biochim Biophys Acta 2005;1744:213-23.
- [13] Bubici C, Papa S, Pham CG, et al. The NF-kappaB-mediated control of ROS and JNK signalling. Histol Histopathol 2006;21:69-80.

- [14] Basta G, Lazzerini G, Del Turco S, et al. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule–1 induction by advanced glycation end products. Arterioscler Thromb Vasc Biol 2005;25:1401-7.
- [15] Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 2001;280:E685-94.
- [16] Lee HB, Yu MR, Yang Y, et al. Reactive oxygen species-regulated signalling pathways in diabetic nephropathy. J Am Soc Nephrol 2003;14:S241-5.
- [17] Mehta JL, Chen J, Hermonat PL, et al. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 2006;69:36-45.
- [18] Takaishi H, Taniguchi T, Takahashi A, et al. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Biophys Res Commun 2003:305:122-8.
- [19] Hudson BI, Wendt T, Bucciarelli LG, et al. Diabetic vascular disease: it's all the RAGE. Antioxid Redox Signal 2005;7: 1588-600.
- [20] Brownlee M. The pathology of diabetic complications. A unifying mechanism. Diabetes 2005;54:1615-25.
- [21] Marx N, Walcher D, Ivanova N, et al. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Diabetes 2004;53:2662-8.
- [22] Rojas A, Morales MA. Advanced glycation and endothelial function: a link towards vascular complications in diabetes. Life Sci 2004; 76:715-30.
- [23] Tanaka N, Yonekura H, Yamagishi SI, et al. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor–α through nuclear factor–κB, and by 17b-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 2000;275:25781-90.
- [24] Bierhaus A, Humpert PM, Stern DM, et al. Advanced glycation end product receptor-mediated cellular dysfunction. Ann N Y Acad Sci 2005;1043:676-80.
- [25] Li L, Roumeliotis N, Sawamura T, et al. C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein—induced endothelial dysfunction. Circ Res 2004;95:877-83.
- [26] Chen M, Nagase M, Fujita T, et al. Diabetes enhances lectin-like oxidized LDL receptor–1 (LOX-1) expression in the vascular endothelium: a possible role of LOX-1 ligand and AGE. Biochem Biophys Res Commun 2002;287:962-8.
- [27] Maingrenette F, Renier G. Linoleic acid increases lectin-like oxidized LDL receptor-1 (LOX-1) expression in human aortic endothelial cells. Diabetes 2005;54:1506-13.
- [28] Shin HK, Kim YK, Lee JH, et al. Remnant lipoprotein particles induced apoptosis in endothelial cells by NAD(P)H oxidase-mediated production on superoxyde and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation. Prevention by cilostazol. Circulation 2004;109:1022-8.
- [29] Matsunaga T, Hokari S, Koyama I, et al. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun 2003;303:313-9.
- [30] Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proinflammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol 2006;26:611-7.
- [31] Li L, Mamputu JC, Wiernsperger N, et al. Signaling pathways involved in human vascular smooth muscle cell proliferation and matrix metalloproteinase—2 expression induced by leptin: inhibitory effect of metformin. Diabetes 2005;54:2227-34.
- [32] Khouri H, Collin F, Bonnefont-Rousselot D, et al. Radical-induced oxidation of metformin. Eur J Biochem 2004;271:4745-52.
- [33] Majithiya JB, Balaraman R. Metformin reduces blood pressure and restores endothelial function in aorta of streptozotocin-induced diabetic rats. Life Sci 2006;78:2616-24.

- [34] Pillarisetti S, Saxena U. Role of oxidative stress and inflammation in the origin of type 2 diabetes: a paradigm shift. Expert Opin Ther Targets 2004;8:401-8.
- [35] Jiang DQ, Chu LX, Liu ZY, et al. Pioglitazone decreased CD40/ CD40L expression on human umbilical vein endothelial cells induced by oxidized low-density lipoprotein. Clin Chim Acta 2006;370:90-4.
- [36] Park SY, Lee JH, Kim CD, et al. Cilostazol prevents remnant lipoprotein particle-induced monocyte adhesion to endothelial cells by suppression of adhesion molecules and monocyte chemoattractant protein–1 expression via lectin-like receptor for oxidized low-density
- lipoprotein receptor activation. J Pharmacol Exp Ther 2005;312: 1241-8.
- [37] Kobayashi N, Hara K, Tojo A, et al. Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway. Hypertension 2005;45: 538-44.
- [38] Wilcock C, Wyre ND, Bailey CJ. Subcellular distribution of metformin in rat liver. J Pharm Pharmacol 1991;43:442-4.
- [39] Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 2000;348:607-14.